Lovastatin enhances adenovirus-mediated TRAIL induced apoptosis by depleting cholesterol of lipid rafts and affecting CAR and death receptor expression of prostate cancer cells

نویسندگان

  • Youhong Liu
  • Lin Chen
  • Zhicheng Gong
  • Liangfang Shen
  • Chinghai Kao
  • Janet M. Hock
  • Lunquan Sun
  • Xiong Li
چکیده

Oncolytic adenovirus and apoptosis inducer TRAIL are promising cancer therapies. Their antitumor efficacy, when used as single agents, is limited. Oncolytic adenoviruses have low infection activity, and cancer cells develop resistance to TRAIL-induced apoptosis. Here, we explored combining prostate-restricted replication competent adenovirus-mediated TRAIL (PRRA-TRAIL) with lovastatin, a commonly used cholesterol-lowering drug, as a potential therapy for advanced prostate cancer (PCa). Lovastatin significantly enhanced the efficacy of PRRA-TRAIL by promoting the in vivo tumor suppression, and the in vitro cell killing and apoptosis induction, via integration of multiple molecular mechanisms. Lovastatin enhanced PRRA replication and virus-delivered transgene expression by increasing the expression levels of CAR and integrins, which are critical for adenovirus 5 binding and internalization. Lovastatin enhanced TRAIL-induced apoptosis by increasing death receptor DR4 expression. These multiple effects of lovastatin on CAR, integrins and DR4 expression were closely associated with cholesterol-depletion in lipid rafts. These studies, for the first time, show correlations between cholesterol/lipid rafts, oncolytic adenovirus infection efficiency and the antitumor efficacy of TRAIL at the cellular level. This work enhances our understanding of the molecular mechanisms that support use of lovastatin, in combination with PRRA-TRAIL, as a candidate strategy to treat human refractory prostate cancer in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epirubicin enhances TRAIL-induced apoptosis in gastric cancer cells by promoting death receptor clustering in lipid rafts.

Gastric cancer cells are usually insensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). In the present study, in MGC803 cells treated with 100 ng/ml TRAIL for 24 h, the inhibition rate of cell proliferation was 9.76±2.39% and the rate of cell apoptosis was only 4.37 ± 1.45%. Treatment with epirubicin (1.18 µg/ml, IC50 dose for 24 h) and TRAIL (100 ng/ml for 24 h) led to...

متن کامل

Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts.

Cytokines such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in colon cancer cells through engagement of death receptors. Nevertheless, evading apoptosis induced by anticancer drugs characterizes many types of cancers. This results in the need for combination therapy. In this study, we have investigated whether the flavonoid quercetin could sensitize hu...

متن کامل

Synergistic Effect of Subtoxic-dose Cisplatin and TRAIL to Mediate Apoptosis by Down-regulating Decoy Receptor 2 and Up-regulating Caspase-8, Caspase-9 and Bax Expression on NCI-H460 and A549 Cells

Objective(s): Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in tumor cells, more than half of tumors including non-small cell lung cancer (NSCLC) exhibit TRAIL-resistance. The purpose of this study was to determine whether subtoxic-dose cisplatin and TRAIL could synergistically enhance apoptosis on NSCLC cells and investigate its under...

متن کامل

Soy isoflavones augment the effect of TRAIL-mediated apoptotic death in prostate cancer cells.

Prostate cancer represents an ideal disease for chemopreventive intervention. Genistein, daidzein and equol, the predominant soy isoflavones, have been reported to lower the risk of prostate cancer. Isoflavones exert their chemopreventive properties by affecting apoptosis signalling pathways in cancer cells. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is an endogenous antic...

متن کامل

Cisplatin and a potent platinum(IV) complex-mediated enhancement of TRAIL-induced cancer cells killing is associated with modulation of upstream events in the extrinsic apoptotic pathway.

TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) can selectively trigger apoptosis in various cancer cell types. However, many cancer cells are resistant to death receptor-mediated apoptosis. Combination therapy with platinum complexes may affect TRAIL-induced signaling via modulation of various steps in apoptotic pathways. Here, we show that cisplatin or a more potent platinum(I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015